TinyMultiBootLoaderPlus Help

The TinyMultiBootLoaderPlus @ 2020 - Development - NOT COMPLETED YET!!



Introducing TinyMultiBootLoaderPlus

What is TinyMultiBootLoaderPlus?
It is a bootloader for microcontrollers

A Bootloader is a firmware running in the PIC device which allows the user to send it’s own firmware
without the need of a programmer.

TinyMultiBootLoaderPlus Bootloader is

Firmwares for many microcontrollers including PICs and AVR devices. This microconroller firmware
is needed to be send to the microcontroler flash memory with a programmer, only once.

a PC software which communicates, via serial connection (only, except for PIC32 for which an USB
firmware exists), with the bootloader firmware in the microcontroler device and send it the user’s
program.

Features of the firmware

Size of only 100 words; (all versions, for 16F,18F,dsPIC occupy less than 100 words); Can write flash,
eeprom and configuration bytes(18F); On reset, waits 1 second (adjustable) for a message from the PC,
if not received, launch user application; The .asm file can be easily modified and adapted for any
frequency (or baudrate);

Features of the PC software

Can upload programs into flash (in current version eeprom and cfg bytes can be modified only
manually, depending on the device type); Works with PIC16F,PIC18F and dsPIC types; automatically
detects HEX content and PIC model; Remembers last settings; In case of errors, performs
retransmissions or tries to resynchronize with pic; The communication settings are editable so you can
write any COM number or desired baud; If a filename is specified as a command line parameter, it will
automatically try to write it;

Development program

This bootloader is based on the original works by "Tiny PIC Bootloader" see
http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm by Claudiu Chiculita. We thank his great
works.

The Windows Operating System software is based on "Tiny Pic Bootloader for GNU/Linux" writen in
python by Ferezvi and has been ported to Visual Studio.

TinyMultiBootLoaderPlus capabilities

TinyMultiBootLoaderPlus supports the following microconrtollers: Atmel: ATtiny ATmega NXP
ARM Cortex-M0+ Microchip: PIC10 PIC12 PIC16 PIC18 PIC24 dsPIC30 dsPIC33 PIC32


http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm

And:

with light modifications to the Bootloader firmware for new devices without having to modify
something: neither your code, nor the linker script, nor remap reset/interrupts vectors to new
locations, etc... via GUI or command line with automatic Reset on RTS serial pin with autodetect of the
right COM port and baud rate (only if automatic Reset on RTS serial pin is enabled and correctly
connected to PIC device) with HEX code verification to avoid to send a program from a different device
family in your PIC (for example: prevent to program a PIC16 "hex" in a PIC18 device) with debug
messages capabilities

Licencing

This software is under "Creative Commons Attribution Non-Commercial License": you can use it at
home for free you can use it at work for free you can share it for free, but this licence must remain
the same you can modify it as you want, but this licence must remain the same you CAN’T sell it, even
if you have modified it



Changes

Formal Release of v0.12.5

Reference Time Stamp

ASCIIDOCs rendered 2020-09-23
11:07:47 GMT Summer Time

Master ToC information 2020-09-23
11:07:03 GMT Summer Time

Changes in this release

2020/9/20: release of TinyMultiBootLoaderPlus+ (v0.12.x)

Development team now lead by Evan R. Venn - Anobium
SourceForge now include source for version 12
SourceForge updated to include downloads for Firmware and a PC Application

2018/03/27: release of TinyMultiBootLoaderPlus+ (v0.12.5)

Development team now includes Evan R. Venn - Anobium

SourceForge updated to include source for version 1

SourceForge updated to include downloads for Firmware and a PC Application
Release of Tiny_Avr-Pic_Bootloader+ (v0.12.x)

Updated User interface - huge changes to remove typos and languge issues
Updated User interface for useability

Updated to include support for USB

2016/05/22: release of Tiny_Avr-Pic_Bootloader+ (v0.11.0)

Docs / Web site:

in "Tested compilers: PIC" page:
"Microchip C18" added

"Microchip XC8" moddified
"JALv2" moddified

2015/02/24: Tiny AVR/PIC Bootloader+ is now Tiny Multi Bootloader+ release of Tiny_Avr-
Pic_Bootloader+ (v0.10.0) Docs / Web site:



Tested compilers: TI page added

Tested devices: TI page added

TI MPS430 page added

Tested compilers: 8051 page added

Tested devices: 8051 page added

Silicon Labs (8051 page added

Tested compilers: Microchip PIC page modified: SourceBoost - BoostC compiler added
Using PC software page modified: upsate of the command line documentation

Tested Devices: Microchip PIC page modified: added note from Dan posted on 2014.02.06
(http://sourceforge.net/p/tinypicbootload/discussion/general/thread/f759f79b/)

Tested Devices: Microchip PIC updated: added new devices

Firmwares: Microchip PIC10, PIC12, PIC16 pages modified: Loading firmware from PC app,
wo/ changing RESET vector section added
(http://sourceforge.net/p/tinypicbootload/discussion/help/thread/645cfea2/) (Dan)
Firmwares: Microchip PIC10, PIC12, PIC16, PIC18, PIC18] pages modified: how to generate
absolute code (and not relocatable code) for modified bootloaders (Dan)

Changed screenshots

2014/07/03: Release of Tiny_Avr-Pic_Bootloader+ (v0.9.0)

Docs / Web site - Web site now uses frames

Tested compilers: NXP ARM page added

Tested devices: NXP ARM page added

PIC18] page added

Microchip 16-bit PIC MCU page added

PIC24 page's name modified to Type D

dsPIC page's name modified to Type E

NXP ARM Cortex-M@ page added

About page modified

description of data transfer formats (from Dan) added in PIC10, PIC12, PIC16, PIC18,
PIC18], 16-bit PIC TypeD and Type E pages

difference between D and E type explained (from Dan) in Microchip 16-bit PIC MCU page
Tested Devices: PIC updated.

2014/02/22: Eelease of Tiny_Avr-Pic_Bootloader+ (v0.8.3.1)

Docs / Web site:

About page modified.

PIC18F1330 device added to Tested Devices: PIC page.

In Firmwares: PIC32 page, use of USB firmware explained.
Tested Devices: PIC updated.

Tested Compilers: PIC updated.

2013/12/31:



release of Tiny_Avr-Pic_Bootloader+ (v0.8.3)

Docs / Web site:

Added in the Tested PIC Compilers page, JALv2 tips to get it works with TinyBootloader+
(from Sunish).

Added in the Tested PIC Compilers page, PIC18 assembler tips to get it works with
TinyBootloader+ (from Dan).

2013/10/09:

release of Tiny_Avr-Pic_Bootloader+ (v0.8.2)

2013/09/17:

release of Tiny_Avr-Pic_Bootloader+ (v0.8.1)

2013/07/31:

release of Tiny_Avr-Pic_Bootloader+ (v0.8.0)

2013/07/20:

release of Tiny_Avr-Pic_Bootloader+ (v0.7.1)

2013/07/18:

release of Tiny_Avr-Pic_Bootloader+ (v0.7.0.2)

2013/07/12:

release of Tiny_Avr-Pic_Bootloader+ (v0.7.0.1)

2013/07/06:

Tiny Pic Bootloader+ is now Tiny AVR/PIC Bootloader+
release of Tiny_Avr-Pic_Bootloader+ (v0.7.0)

Docs / Web site:

Added Tested devices: AVR page.

Added Firmwares: modify for ATtiny page.



2013/05/31:

release of TinyPicBootloader+ (v@.6.

2013/05/16:

release of TinyPicBootloader+ (v@.6.
Docs / Web site:
Tested devices page updated.

2013/05/08:

release of TinyPicBootloader+ (v0.6.
Docs / Web site:

changed web site layout.

Quickstart page complete.

2013-04-16:

release of TinyPicBootloader+ (v0.6.
Docs / Web site:
Hardware Connections page complete.

2013-04-12:

release of TinyPicBootloader+ (v0.6.

2013-04-10:

release of TinyPicBootloader+ (v0.6.

2013-04-10:

release of TinyPicBootloader+ (v@.6.

2013-02-03:

release of TinyPicBootloader+ (v@.6.

5.1)

3.1)

2.1)



2013-02-02:

Website layout created
Forum created

2013-01-31: First public release of TinyPicBootloader+ (v0.6)

Quick Start

Introduction:

This introduction covers two aspects - making the microcontroller work with a bootloader, and,
transferring the user program to the microcontroller.

Making the microcontroller work with a bootloader

You must transfer the bootloader firmware in your target microcontroller with an external
programmer (i.e. Pickit programmers, etc...). This has to be done once.

Simply take the hex file and program with the selected programmer.
If the bootloader firmware for your target microcontroller is not shown in the supported

isn’t in "Tiny AVR/PIC Bootloader+" archive or you want to use a different Baud Rate and/or UART port,
you must modify a firmware from a device close to yours (read "[Firmwares:] modify for xxxxx" web
pages howto). Connect PIC board to PC: Now you can connect your AVR or PIC board to your PC (read
the "Hardware Connections" web page).

Minimal connections are: RX pin from PC - TX pin on AVR or PIC. TX pin from PC - RX pin on AVR or
PIC. GND pin from PC - GND pin on AVR or VSS pin on PIC. for optionnal auto-reset: !RTS pin from PC
- IRESET pin on AVR or !MCLR pin on PIC Note: for the bootloader to work properly, the AVR or PIC
must be running (device powered and quartz connected (or internal oscillator correctly configured))!!!
Create your application "hex" file: Most of the time, you will develop your application firmware as
usual, without having to modify something: neither your code, nor the linker script, nor remap
reset/interrupts vectors to new locations, etc.

The "Tested Compilers: xxxxx" web page lists tested compilers for different AVR / PIC families with
eventual tips to get your code working with "Tiny AVR/PIC Bootloader+".

Transferring the user program to the microcontroller:



The easiest way to use "Tiny AVR/PIC Bootloader+" is to leave all options as default and only change the
PC’s COM (select the one connected to the AVR or PIC board) and the Baud Rate (select it depending of
the bootloader firmware configuration, see "[Firmwares:] modify for xxxxx" web pages). Check list: -
the AVR or PIC was programmed with the right bootloader firmware? - the AVR or PIC is correctly
connected to the PC? - the AVR or PIC is powered? - the right COM port is selected in "Tiny AVR/PIC
Bootloader+"? - the right Baud Rate is selected in "Tiny AVR/PIC Bootloader+"? If previous checks are
OK, then click on the [Check Device] button: They are two possibilities: "Found: xxxxx" is shown in the
message tab. Everything is OK, then read "Transfert file" below. "Error: No Device detected!!!" is shown
in the message tab. It means that optionnal software reset isn’t used (RTS pin from PC isn’t connected
to IMCLR pin on PIC (see "Hardware Connections" web page)). Then click the [Check Device] button
again and when "Check Device..." is shown in the message tab, manually reset the AVR or PIC device (it
must be done before "Error: No Device detected!!!" appears, you have ~5 seconds): "Found: xxxxx" is
shown in the message tab. Everything is OK, then read "Transfert file" below. "Error: No Device
detected!!!" is shown in the message tab. Then you have a problem... Double check everything! If it still
doesn’t work you can ask for help in the forum. Transfert file: Click on the [Browse] button and select
your application’s "hex" file, then click on [Write Flash]. After a few messages, you should have
"Transfert successfull :-)". Well done!

Bootloader Primer

A Bootloader

* is a special program that runs before any user program is executed.

* is programmed into a microcontroller and communicates with the computer usually through the
serial interface to support the transfer of the user program.

* receives a user program via a loading process from the source computer and writes the user
program in the flash memory, then launches this user program for execution.

There are two types of bootloaders, some that require that the user to locate the user program to fit
above the bootloader, and the second approach where the reallocation of the user program if
completed by the bootloader loading process where the first 4 instructions of the user program are
adapted to goto the bootloader program memory address.

With both type of bootloader once the bootloader has terminaed the bootloader exits and pass control
to the user program.

TinyMultiBootLoaderPlus

TinyMultiBootLoaderPlus uses the second type. TinyMultiBootLoaderPlus essentially it located in the
highest memory location and is execture via a GOTO statement within the first four words of the
microcontroller. When a user program is loaded via the loading process, the user program is adapted
as follows:

* The first four instructions of the source user program are programmed into the memory four



instructions below the bootloader.

* The first four instructions of the source user program are replaced with instructions to GOTO to the
bootloader memory location.

» Then, the remainder of the source user program remains the same.

The diagram below shows the method. The left hand diagram shows the source user program. The
right hand diagram shows the bootloaders' GOTO and the Bootloader (in red), the user program is the
loaded (in green)

Bootloader Constraints

Bootloaders can only be used with those microcontrollers that can write to flash memory through
software.

The bootloader itself must be written into the flash memory with an external programmer.

In order for the bootloader to be launched after each reset, a "goto bootloader" instruction must exist
in the first 4 instructions.

These Constraints apply to the TinyMultiBootLoaderPlus bootloader.

Connectivity

Introduction:

This introduction covers

Software

Introduction:

This introduction covers

Windows Software

Introduction:

This introduction covers



Linux Software Support

Introduction:

This introduction covers

Support

Introduction:

This introduction covers

Firmware

Introduction:

This introduction covers

SiliconLabsC8051

Introduction:

This introduction covers

Atmel ATtiny

Introduction:

This introduction covers

10



End of page

Atmel ATMega

Introduction:

This introduction covers

Arduino

Introduction:

This introduction covers

Microchip PIC10

Introduction:

This introduction covers

Microchip PIC12

Introduction:

This introduction covers

Microchip PIC16

Introduction:

11



This introduction covers

Microchip PIC18

Introduction:

This introduction covers

Microchip PIC18]

Introduction:

This introduction covers

Microchip PIC 16bit

Introduction:

This introduction covers

Microchip PIC32

Introduction:

This introduction covers

NXPARMCortex-MO

Introduction:

12



This introduction covers

TIMSP430

Introduction:

This introduction covers

TinyMultiBootLoaderPlus Maintenance

This is the maintenance section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Maintenance

Introduction:
These insights are not distribution specific.
Solution Architecture: These components are key for a complete solution:

1. installer
2. ini files

3. Help

13



	TinyMultiBootLoaderPlus Help
	Table of Contents
	Introducing TinyMultiBootLoaderPlus
	Changes
	Quick Start
	Bootloader Primer
	Connectivity
	Software
	Windows Software
	Linux Software Support

	Support
	Firmware
	SiliconLabsC8051
	Atmel ATtiny
	Atmel ATMega
	Arduino
	Microchip PIC10
	Microchip PIC12
	Microchip PIC16
	Microchip PIC18
	Microchip PIC18J
	Microchip PIC 16bit
	Microchip PIC32
	NXPARMCortex-M0
	TIMSP430

	TinyMultiBootLoaderPlus Maintenance
	Maintenance

